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We present a tractable stochastic phase model of the temperature sensi-
tivity of a mammalian cold receptor. Using simple linear dependencies of
the amplitude, frequency, and bias on temperature, the model reproduces
the experimentally observed transitions between bursting, beating, and
stochastically phase-locked firing patterns. We analyze the model in the
deterministic limit and predict, using a Strutt map, the number of spikes
per burst for a given temperature. The inclusion of noise produces a vari-
able number of spikes per burst and also extends the dynamic range of
the neuron, both of which are analyzed in terms of the Strutt map. Our
analysis can be readily applied to other receptors that display various
bursting patterns following temperature changes.

1 Introduction

Bursting is the rhythmic generation of several action potentials during a
short time, followed by a period of inactivity. The limiting case of a single
spike per burst is termed beating. There are a wide variety of burst phenom-
ena, but it appears that many are due to a similar underlying mechanism.
The various chemical and electrical dynamics of the neuron operate on
many timescales, and in some cases, the full dynamics can be dissected into
a fast system coupled to a slowly oscillating subsystem (Rinzel & Lee, 1987).
Typically the fast system operates on a millisecond timescale and models
the currents associated with spike generation, while the slow subsystem,
with a timescale of up to 1 second or more, is often associated with cal-
cium concentrations. The fast system is modulated by the slow one and has
two parameter regimes: a stationary state or “fixed point” and a limit cycle
state during which action potentials are periodically generated. Thus, for
this “slow-wave” bursting to occur, the slow variable must parameterize
bifurcations in the fast system.
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Cold receptor neurons are free nerve endings (Schäfer, Braun, & Rempe,
1990) that transduce local temperature information into neuronal signals.
Their neuronal discharge takes the form of regular bursts, phase-locked sin-
gle spikes (“beating”), or stochastically phase-locked spikes (“skipping”).
The cells are subcutaneous to the skin and tongue but are sparsely dis-
tributed (Ivanov, 1990). Due to their small size, they cannot be recorded
intracellularly, and the only quantity that can be measured directly is the
spike train. However, other cellular properties may be inferred by the use
of pharmacological agents. Temporal firing patterns and interspike interval
histograms (ISIH) from these neurons (see Figure 1) show that the bursting
dynamics is highly temperature dependent and further suggest the exis-
tence of a slowly oscillating current with a frequency that increases with
temperature (Braun, Schäfer, & Wissing, 1990).

In this article we present a canonical model for a thermoresponsive cold
receptor with noise that exhibits bursting, beating, and skipping. Our model
is a simplified version of a full ionic model of a slow-wave burster, such as
Plant’s model, which formed the basis of a recently proposed model of
cold thermoreception (Longtin & Hinzer, 1996). The simplified model de-
rives from the ionic model by means of a phase-reduction procedure due to
Ermentrout and Kopell (1986). Although we focus specifically on cold re-
ceptors, the phase-model approach is general and is applicable to any ther-
mosensitive neuron that discharges in a similar manner to cold receptors
(for example, certain cells exhibit similar patterns but in a different order;
(Braun, Schäfer, Wissing, & Hensel, 1984). It is also applicable to other more
recently proposed ionic models of cold receptors (Braun, Huber, Dewald,
Schäffer, & Voigt, 1998). The model contains biologically motivated param-
eters and exhibits behavior that is consistent with experiment. Moreover, it
has the advantage of being mathematically tractable so that if these param-
eters were to be quantified, analytic predictions about the behavior of real
receptors could be made.

We analyze the model in the limiting case of zero noise (the determinis-
tic limit) and also when subjected to noise originating primarily from con-
ductance fluctuations and electrogenic pumps. For the deterministic case,
we are able to predict how many action potentials are generated per burst
for a given temperature and derive the transition temperature from burst-
ing to beating. For the latter we are able to estimate the skipping rate at a
given temperature. We demonstrate that skipping is a noise-induced effect
that can occur for both the suprathreshold and the subthreshold dynamics.
Above threshold, spikes become deleted as a consequence of noise-induced
trapping (Apostolico, Gammaitoni, Marchesoni, & Santucci, 1994), while
below threshold, the firing pattern becomes augmented by noise-induced
spiking.

The article is organized as follows. Section 2 is a brief review of cold re-
ceptor physiology, a subject covered more completely in Longtin and Hinzer
(1996). Our model is introduced in section 3. In section 4 we consider the
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Figure 1: Characteristic discharge patterns of bursting cold receptors of the cat
lingual nerve at different constant temperatures. The steady-state patterns are
recorded at least two minutes after each 5◦C temperature change (from Figure 1
of Schäfer et al., 1988, reproduced with permission).

limiting case of zero noise and analyze the simulated firing patterns us-
ing Floquet theory. We then examine how noise can alter the deterministic
discharge pattern.

2 A Summary of the Neuro- and Electrophysiology of Cold Receptors

Figure 1 shows characteristic discharge patterns and their associated ISIH,
measured from cold receptors in a cat tongue at various static temperatures.
Not every cell has this repertoire; some exhibit only a few of these patterns
when the temperature is varied. Furthermore, the temperature at which a
given discharge pattern occurs varies between receptors. It has been argued
(Dykes, 1975) that by using the temporal structure of the discharges, the
central nervous system is able to discriminate between firing patterns that
have the same mean firing rate but correspond to different temperatures.
This is plausible because bursts can drive higher neurons efficiently (Lisman,
1997): the relatively high firing rates during a burst release higher levels
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of transmitter than would be the case if the individual spikes were more
broadly distributed in time.

At low temperatures, the neuron bursts repetitively with a uniform burst
length and with bursts that appear to be synchronized with some underlying
slow oscillation. However, the timing of individual spikes within the burst is
nonuniform (Braun, Bade, & Hensel, 1980), since the firing frequency within
a burst increases. This is a feature shared with parabolic bursting neurons
(Rinzel & Lee 1987).1 When the temperature is quasi-statically increased,
the burst length and interburst period diminish, until at the middle of its
operating range, the neuron emits a regular spike train with phase-locked
spikes.

If the temperature is increased still further, the spike train becomes aperi-
odic so that occasional double spikes appear and skipping occurs. The spike
train is still synchronized to some underlying rhythm, but between spikes
a random integer number of oscillation cycles may be skipped (Braun et
al., 1990). The origin of this randomness is uncertain, but due to the cell’s
lack of synapses and its small size, it is thought that thermal, conductance,
and other fluctuations might be important. It has been argued (see Longtin
& Hinzer, 1996, for a review), based on physiological and pharmacological
studies, that the key ingredients of this skipping are noise and a slow in-
ternal oscillation with a maximum amplitude that lies close to the spiking
threshold. The skipping rate is also thermally dependent, increasing with
temperature, and above 40◦C, skips of up to eight cycles have been observed
(Schäfer, Braun, & Rempe, 1988).

We introduce some nomenclature for describing the discharge pattern.
The number of action potentials in a given burst is N, and the mean number
of spikes per burst, N, is the temporal average of N. � is the frequency of
the slow oscillatory cycle and is the reciprocal of the sum of the inter- and
intraburst durations. At a fixed temperature, the number of spikes per burst
for a given receptor can vary by one or two (Braun et al., 1980), implying that
the bursting dynamics also has a degree of stochasticity. This further sug-
gests the presence of noise or chaos, or both (Longtin & Hinzer, 1996). The
breadth of the ISIH peak corresponding to the interburst period suggests
fluctuations in the slow-wave frequency �(T), the mean of which is deter-
mined only by T. The variability in the number of spikes per burst further
contributes to this breadth. Examination of the spike trains of several cells
at different static temperatures reveals (Braun et al., 1984) that both � and
N depend monotonically (and sometimes approximately linearly (Braun
et al., 1980) on the temperature T, with � increasing and N decreasing
with T.

1 A burst is termed parabolic if the spiking frequency is lower at both the beginning
and the end of the burst compared with that during the middle of the burst; thus, here we
have only half of the “parabolic” bursting
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The thermosensitivity and regular discharge of cold receptors have been
likened to that of Aplysia R15 neurons. Intracellular recordings of R15 have
revealed the mechanism of slow-wave bursting and have shown the pres-
ence of an underlying slow-wave voltage oscillation that persists even when
spike generation is pharmacologically blocked. The rhythmic behavior of
Aplysia is well reviewed in (Canavier, Clarke, & Byrne, 1991). The ther-
mosensitivity of Aplysia R15 cells has been investigated (Carpenter, 1967)
(reviewed in Longtin & Hinzer, 1996), and it points to the importance of the
thermosensitivity of their electrogenic ionic pumps (such as Na+-K+ AT-
Pase); such pumps have also been found in cold receptors. It has thus been
proposed that the mechanisms of bursting and thermosensitivity for both
cold receptors and for Aplysia R15 neurons are related (Willis, Gaubatz, &
Carpenter, 1974; Wiederhold & Carpenter 1982). That hypothesis was fur-
ther substantiated in a recent study (Longtin & Hinzer, 1996) that extended
the Plant model (Plant, 1981), devised originally for R15 bursting, to explain
cold receptor firing.

Finally, skipping occurs in other preparations in which there is no appar-
ent periodic stimulation. For example, a related thermoresponsive prepara-
tion is the ampullae of Lorenzini of the dogfish. These mandibular sensory
afferents exhibit a similar temperature-dependent slow wave, but although
skipping occurs, they do not burst in the same manner. Recent data (Braun,
Wissing, Schäfer, & Hirsch, 1994) point to this skipping as being a conse-
quence of noise internal to the neuron, following a mechanism similar to
that suggested for cold receptors (Braun et al., 1980): a slow oscillation pe-
riodically brings the membrane potential close to the firing threshold, at
which point action potentials are caused randomly by noise pushing the
potential over threshold.

All of these studies suggest the following scenario. At low temperatures,
the membrane potential is high and the slow wave depolarizes the mem-
brane for a significant part of the cycle; the neuron therefore bursts. As the
temperature increases, so does the oscillation frequency of the slow wave. In
addition the mean potential becomes more negative (due to the electrogenic
pump), and so the depolarization time due to the slow wave, and hence the
burst length, is reduced. At high temperatures, the slow wave is no longer
able to generate spikes by depolarization; instead, all spikes must be noise
driven.

3 Temperature-Dependent Phase Model of Cold Receptor Function

3.1 A Phase Model. Plant’s model (1981) of slow wave, parabolic burst-
ing, extended to cold receptors in Longtin and Hinzer (1996), is based on a
Hodgkin-Huxley-type ionic current description. Although such ionic mod-
els (see also Braun et al., 1998) elucidate cellular function, they involve
many coupled differential equations and so are difficult to treat analyt-
ically. They also involve many parameters that are currently inaccesible
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to experimental determination. Consequently, we seek a simpler canoni-
cal model. We write the vector of potentials and gating variables associ-
ated with spiking (e.g., fast sodium/calcium and potassium channels) as
u ∈ R

p, and the vector of concentration and gating variables associated
with the slow dynamics (e.g., calcium concentration) as v ∈ R

q. Ermen-
trout and Kopell (1986) studied parabolic bursting models with the general
form

u̇ = f (u) + ε2g(u, v, ε)

v̇ = εh(u, v, ε) (3.1)

for which the following two properties hold:

1. When ε = 0 the system u̇ = f (u) has an attracting invariant circle
and a single degenerate critical point; the system is at a saddle-node
bifurcation on a limit cycle.

2. v̇ = h(0, v, 0) has a limit cycle solution.

They showed that such models converge in the weak-coupling limit, ε → 0,
to the canonical form

φ̇ = [1 − cos(φ)] + [1 + cos(φ)] g(0, v, 0)

v̇ = 1
c

h̄(0, v, 0), (3.2)

where c is some constant and f (), g(), h(), and h̄() are smooth functions of
their arguments. φ ∈ [−π, π] is defined on the unit circle S1 and represents
the phase of the membrane potential at the trigger zone. A full rotation of
φ corresponds to the generation of an action potential.

The requirement of weak coupling (ε → 0) implies that the time con-
stants for the slow dynamics must be much smaller than those for the fast
subsystem. For real cold receptors, ε is not quantifiable since there are no
intracellular recordings. However, we previously (Longtin & Hinzer, 1996)
proposed that the Plant model might well describe cold receptors and for
this model, the coupling between fast and slow subsystems is indeed weak
(Rinzel & Lee, 1987). However, as it stands, the Plant model fails to satisfy the
second hypothesis since the slow subsystem approaches a fixed point when
the membrane potential is clamped to any fixed value. Soto-Treviño, Kopell,
& Watson (1996) have therefore generalized Ermentrout and Kopell’s (EK)
phase reduction and furthermore have taken the Plant model as their spe-
cific example. They show that hypothesis (2) can be replaced by the more
lax criterion that there be a slow periodic orbit that remains close to a curve
of degenerate homoclinic points for the fast system. Under such constraints,
the Plant model may be reduced to the canonical form in equation 3.2.
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We will modify the canonical form to account for temperature effects,
while retaining similar dynamics and bifurcations. As a first step, we write
the slow dynamics as the sum of a constant term X and a zero-mean periodic
term Y(�, t) that oscillates with frequency �, and for convenience we set
θ = φ + π . Thus

θ̇ = [1 + cos(θ)] + [1 − cos(θ)][X + Y(�, t)]. (3.3)

In the absence of any electrophysiological evidence, we initially choose to
model the oscillatory component with a simple cosine where the upward
trend might derive from an inward Ca2+ current while the downward trend
could be a Ca2+-dependent outward K+ current. Furthermore, we rescale
time so that t′ = (1 − X)t, and introduce

b = 1 + X
1 − X

and A cos(�t′) = −Y(�, t)
1 − X

. (3.4)

Thus we obtain

dθ

dt′
= [b + cos(θ)] − A cos

(
�t′

)
[1 − cos(θ)]

= [
b − A cos

(
�t′

)] + [
1 + A cos

(
�t′

)]
cos(θ). (3.5)

The parameter b modulates the mean potential of the cell (and hence its
excitability), and thus could be associated with the activity of one or more
electrogenic pumps that move ions against their concentration gradients.2

The phase model in equation 3.5 displays a saddle-node bifurcation on
a limit cycle whenever

b − A cos (�t) = 1 + A cos (�t) . (3.6)

Time appears here explicitly (for clarity we have omitted the prime), and
so for certain parameter values, the bifurcation occurs periodically in one
direction followed by the other. If the slow oscillation is of such magnitude
that for part of the cycle

A cos (�t) <
(b − 1)

2
− η, (3.7)

where η is some small positive parameter, then the neuron bursts. This
oscillatory behavior across the saddle node is much simpler than the corre-

2 Kopell and Ermentrout (1986) discuss other possible biological correlates of the slow
oscillation and make the alternative suggestion that they could derive solely from oscil-
lations in pump activity.
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sponding bifurcations undergone by ionic models. For example, the Plant
model has a two-dimensional slow subsystem that depends on the three-
dimensional fast subsystem, with the result that the latter is periodically
driven through homoclinic transitions between steady-state and limit-cycle
solutions.

Close to the bifurcation the phase model exhibits critical slowing down;
relaxation to a fixed point (the resting potential) becomes polynomial in
time rather than exponential, thus increasing the time for θ(t) to traverse
the unit circle. Such behavior has also been described as passage through a
bottleneck (Strogatz, 1994). Therefore, within a burst there is a nonuniform
distribution of spikes: a signature of parabolic bursting.

Equation 3.5 may be made more tangible by graphing 1 + A cos(�t) and
b − A cos(�t), as in Figure 2a. A saddle-node bifurcation occurs when the
sinusoids cross, and hence bursting occurs. The mean number of spikes per
burst, N, is proportional to �, the overlap of the two curves. � is a function
of all of A, �, and b, and is approximated by

�= 2
�

(
π−cos−1

(
b − 1
2A

))
= 1

�

(
π+ b − 1

A

)
+O

[(
b − 1
2A

)3
]

. (3.8)

3.2 Modeling Temperature Dependence and Fluctuations. The main
effect of a temperature change is a variation in the rate constants of the
biochemical processes occurring within the cell. Therefore, to obtain ex-
pressions for the variation with temperature of the coefficients of the phase
model, we must first consider the thermal dependence of the parameters
of more biophysical models of slow-wave bursting. In the appendix, we
derive a novel relationship between the frequency � of the slow wave in
equation 3.5 and parameters of the Plant model extended to cold receptors
(Longtin & Hinzer, 1996). The two main temperature-dependent parame-
ters of the slow subsystem in the Plant model are the (positive) kinetic rates
λ and ρ of, respectively, the slow inward current gating variable and the
calcium dynamics. We find that � ≈ (λρ)1/2.

Also, numerics suggest that the transition from fixed point to the slow-
wave limit cycle is a supercritical Hopf bifurcation and that the limit cycle
frequency does not depend strongly on the bifurcation parameter, as is usu-
ally the case in the vicinity of this kind of bifurcation. If both of these rates
are assigned the same temperature dependence as in Longtin and Hinzer
(1996)—the same Q10—then � will vary with temperature according to this
Q10 as well. For Q10 = 3 in Longtin and Hinzer (1996), this means that
� ≈ 30.1T. This functional form readily fits the temperature dependence seen
in the conductance-based model (Longtin & Hinzer, 1996) (not shown). Fur-
ther, since this form is almost linear over the temperature range of interest, it
is similar to the experimental observation (Braun et al., 1980) that the burst
frequency (slow-wave frequency) increases linearly with T. Over a temper-
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Figure 2: (a) Saddle-node bifurcation and bursting criteria for three different
parameter regimes, with b1 > b2 > b3, and b2 = 1 − 2A. (i) When the overlap
is large, the neuron bursts (fires repetitively) for a time �. (ii) Bursting has
ceased; any spiking activity must be noise driven and the neuron skips (it does
not always fire at every slow wave cycle). (iii) All spiking has ceased, and the
neuron is silent. (b) There are three possible mechanisms by which the burst
length can be reduced (�′ < �) (compare with (a)): (i) increasing slow-wave
frequency, � ′ > �, (ii) decreasing pump parameter b ′ < b1, and (iii) decreasing
slow-wave magnitude, A′ < A.

ature range of 17.8◦ to 40◦C, our analysis produces a factor 11.5 increase
in frequency, which is close to the factor of 10.0 obtained from numerical
simulations of the full model, and close also to actual ratios exhibited by
some cold fibers.

Further bifurcation analysis could be done to compute the leading-order
term for the temperature dependence of the slow-wave amplitude A(T)

and thus also to relate the amplitude parameter in the phase model to bio-
physical parameters of a conductance-based ionic model. Because we are
interested only in reproducing qualitative features of thermosensitivity, we
model thermal dependence with linear functions of the magnitude of the
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pump coefficient, b, and of the magnitude, A, and frequency, �, of the slow
wave.

b→b(T)=b0−bTT A → A(T)=A0+ATT � → �(T)=�0+�TT, (3.9)

where �0,�T,A0,AT,b0, and bT are constants. More complex relationships
could be used if required. Figure 2b shows how the individual variation
of each of these parameters can alter the burst length; it is likely that the
discharge patterns observed are due to some combination of these mech-
anisms. We furthermore confine our interest to the temperature range for
which A(T), �(T) > 0.

Neuronal noise has many possible sources and is generally difficult to
measure, a problem exacerbated by the lack of intracellular recordings from
these neurons. In the absence of synaptic input, its main components are due
to thermal ionic movement, conductance fluctuations in the ion channels,
and electrogenic pump noise (DeFelice, 1981). Thermal noise is proportional
to the absolute temperature, and so varies only slightly over the temperature
range of interest.

For simplicity again, we lump noise terms together into an additive noise
on the θ dynamics (see equation 3.5), as previously proposed in Longtin and
Hinzer (1996) (and references therein). We further assume that the noise ξ(t)
has a zero-mean gaussian distribution and is white:

〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t ′)〉 = 2Dδ(t − t ′). (3.10)

We refer to the noise variance D = σ 2 as the noise strength. Thus we write

dθ

dt
=b(T)−A(T) cos (�(T)t)+[1 + A(T) cos (�(T)t)] cos(θ)+ξ(t).(3.11)

From now on, b(T), A(T), and �(T) are assumed to depend implicitly on
temperature.

If we now examine the system numerically for different temperatures (see
Figure 3) and choose b0, bT, A0, and AT such that at low temperatures there is
a part of the cycle for which equation 3.7 is satisfied, then we observe that the
neuron bursts (see the inset to Figure 3f). As T increases, �(T) and A(T) both
increase while b(T) decreases. However, for a given temperature change, the
increase in A(T) is smaller than and is counteracted by the larger change in
b(T). In this way both the intra– and interburst periods also decrease with
temperature (see the insets to Figures 3d and 3e). We thus obtain a sequence
of firing patterns similar to that seen experimentally (see Figure 1). At low
temperatures, bursts are lengthy, and so the dominant component of the
ISIH is a narrow peak close to the origin (see the inset to Figure 3f), which
corresponds to the timing of successive spikes in a burst (the intraburst
period). As the temperature increases, the burst length decreases and the
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Figure 3: Simulated spike trains (inset figures) and corresponding interspike
interval histograms (main figures) for increasing temperatures. Parameters are:
A0 = 0.3, AT = 0.001, b0 = 0.675, bT = 0.007, �0 = −π/150, �T = π/1500, and
D = 0.05.
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Figure 4: Cold receptors encode temperature by means of their firing patterns
and not by a mean rate code. The efficiency of this strategy is shown by their
ability to encode two different temperatures with the same mean firing rate: (a)
The variability with temperature of the number of spikes in a burst (SB) and the
burst frequency (BF). (b) The mean firing rate (BF×SB) varies with increasing
temperature. See Figures 10a and 10b of Braun et al., (1980). Parameters are:
A0 = 0.234, AT = 0.0004, b0 = 0.5868, bT = 0.00088, �0 = −π/150, �T = π/3000,
and D = 0.025.

interburst period becomes a pronounced feature of the ISIH: a new peak
appears close to one period of the slow-wave oscillation (see Figures 3b and
3c). For high T equation 3.7 is never satisfied, and bursting does not occur;
instead, all spikes are noise driven (see the insets to Figures 3a and 3b) and
higher subharmonics of the slow wave begin to appear in the ISIH.

Furthermore, our canonical model can encode two different temperatures
by two different firing patterns that have the same mean firing rate, as shown
in Figure 4 (cf. Figures 10a and 10b of Braun et al., 1980).

4 Analysis of Bursting and Beating

The neuron’s behavior depends sensitively on both the noise strength and
the temperature. If we graph the mean number of spikes per burst, N(T),
versus T for a neuron subject to a vanishingly small level of noise, we observe
the staircase depicted in Figure 5. Note that N(T) is constant over each
plateau, but between adjacent plateaus changes by a single spike per burst.
Each plateau is labeled by its respective value of N(T), and the transition
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rameters are: A0 = 0.3, AT = 0.001, b0 = 0.675, bT = 0.007, �0 = −π/150, and
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1080 Peter Roper, Paul C. Bressloff, and André Longtin

temperature between the nth and (n − 1)th plateaus by Tn. If a low level of
noise is now introduced, the staircase retains its shape but the steps become
rounded; as D increases, the plateaus disappear, and N(T) approaches a
smoothly decreasing function of temperature.

To understand the origin of the staircase, we reinterpret equation 3.11 as
a gradient system in the limit of high friction:

dθ

dt
= −dU

dθ
+ ξ(t). (4.1)

We now view our model as a particle obeying a noisy dynamics in a time-
dependent potential U(θ, t) of the form

U(θ, t) = −γ (t) [λ(t)θ + sin(θ)] , (4.2)

where

γ (t) = 1 + A cos(�t) and λ(t) = b − A cos(�t)
1 + A cos(�t)

, (4.3)

which is equivalent to an active rotator with periodic coefficients. The mul-
tiplicative term γ (t) periodically rescales the magnitude of U, while λ(t)
periodically sculpts the shape of U (see Figure 6). The coefficients γ (t) and
λ(t) are both periodic with period 2π/� but are antiphase.

4.1 The Deterministic Limit (D → 0): the Strutt Map. At any time t,
the bias λ(t) characterizes the instantaneous deterministic dynamics. Three
regimes occur:

1. λ(t) < 1. The oscillator has one stable and one unstable fixed point,
each given by the solutions to θ = cos−1(−λ). This is termed the locked
state, and the dynamics relaxes to the stable fixed point (see the inset
to Figure 6a).

2. λ(t) = 1. The stable and unstable fixed points coalesce via a saddle-
node bifurcation to form a half-stable fixed point at θ = π .

3. λ(t) > 1. The potential U has no minima and the deterministic dy-
namics has no fixed points. The oscillator therefore rotates with the
variable velocity

θ̇ (t) = γ (t) (λ(t) + cos(θ)) , (4.4)

and each rotation corresponds to the firing of an action potential. Such
a solution is termed a running state (see the inset to Figure 6b).
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Figure 6: The potential U(θ, t) for a single cycle of the slow wave. (a) λmax < 1,
the always-stable potential. For low noise levels the oscillator tends to remain
close to the minima of the potential. (b) λmax > 1, λmin < 1, the partially stable
potential. When the barrier is absent, the oscillator may escape beyond 2π ,
generating an action potential. The particle is then reinjected at θ = 0. The inset
figures caricature the respective potentials at times t = (2n + 1)π/�, n ∈ Z.
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Thus the extremal values of λ(t), λmax = (b + A)/(1 − A) and λmin = (b −
A)/(1 + A), define the global behavior of the system:

1. λmin > 1. The potential U never has a barrier. The neuron fires regu-
larly, and the system is always unstable.

2. λmax < 1. The potential always has a finite barrier. The neuron is
quiescent, and the system is always stable.

3. λmin < 1 and λmax > 1. A potential barrier exists for part of the cycle,
and the system is partially stable.

An always-unstable system spikes repetitively at a very high rate. It
therefore has no useful temporal structure, and so no relevance to our study.
We therefore choose A0 and AT such that at low temperatures, the system
is partially stable, and at high temperatures the system is always stable. We
denote the critical temperature for which λmax = 1 by Tc, which is defined
by

b(Tc) + A(Tc) = 1 − A(Tc) (4.5)

and so, for the linear system (see equation 3.9),

Tc = 1 − b0 − 2A0

2AT − bT
(4.6)

(for the coefficients shown in Figures 3 and 5, Tc = 55◦C). We therefore see
that the nth burst plateau corresponds to a partially stable system for which
the time when the barrier is absent is commensurate with the time to wind
n times round the torus.

Perhaps surprisingly it is found that T1 < Tc (recall that T1 is the temper-
ature beyond which the deterministic neuron ceases firing). In fact, there
is a finite temperature range between T1 and Tc for which one would ex-
pect the running mode to persist over a significant part of the oscillation
period even though, in the limit D → 0, no spikes are generated. This is
a consequence of critical slowing down close to the bifurcation. If λmax is
only marginally greater than unity, then a “ghost” of the half-stable fixed
point causes the relaxation time τ0 to become comparable to the slow-wave
oscillation period. The system is then unable to escape beyond this laminar
region before λ decreases again below unity and the system goes through
the saddle-node bifurcation in reverse.

We may in fact derive a condition for beating to occur. For at least one
action potential to be generated per oscillation, θ must pass through π (i.e.,
passes the point at which the stable and unstable fixed points collide) within
the first half of the cycle—within τ0 < π/�. If θ passes through π after one
cycle, then it moves so slowly that it is unable to escape before the bifurcation
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recurs, and it becomes trapped by the barrier. Thus, if the oscillator is found
at the stable state, θ̂s ≡ cos−1(−λmin), at t = 0, then we have the condition

∫ π
�

0
θ̇dt ≥ π − θ̂s. (4.7)

The envelope function (recall equation 3.8) is a heuristic that loosely pre-
dicts how the deterministic pattern varies with temperature. However, for
this deterministic case, it is possible to predict exactly how many action po-
tentials are actually generated during one cycle. Following Ermentrout and
Kopell (1986) we recast the zero-noise limit of equation 3.11 as a Mathieu
equation. We use the transformation

1
V

d
dt

V = 1 + b
2

cot
(

θ

2

)
(4.8)

and simple trignometric identities to obtain

d2

ds2 V + [
a − 2q cos(2s)

]
V = 0, (4.9)

where we have rescaled time so that 2s = �t and introduced, to accord with
convention (McLachlan, 1947), the coefficients a and q

a = b2 − 1
�2 and q = A(b + 1)

�2 . (4.10)

The Mathieu equation (4.9), is a linear equation with periodic coefficients
(McLachlan, 1947), and hence (according to Floquet’s theorem) has a general
solution of the form

V(s) = c1 exp(ρ1s)p1(s) + c2 exp(ρ2s)p2(s), (4.11)

where c1 and c2 are constants, ρ1 and ρ2 are termed characteristic expo-
nents, and the pi(s) are periodic functions with the same minimal period as
the periodic coefficient of the original equation, 4.9. When the ρi are pure
imaginary (and conjugate), the solutions are bounded and oscillatory. How-
ever, when both are real (with ρ1 = −ρ2), all solutions are unbounded. The
(a, q) plane divides into a countable set of simply connected regions for
which either all solutions fall into the former class—the stable regions—or
belong to the latter class—the unstable regions. This situation is depicted in
the Strutt stability map (see Figure 7) (McLachlan, 1947).

Let Ij denote the jth instability tongue of the Strutt map, which corre-
sponds to a set of general solutions with real exponents. Unbounded solu-
tions are generally of one of two qualitative types (Nayfeh & Mook, 1995):
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Figure 7: The Strutt map: stability and instability regimes for the Mathieu equa-
tion. The graph is symmetric about the ordinate. The jth instability tongue rep-
resents an area of parameter space in which the neuron bursts (fires repetitively
with a periodic pattern), and with a burst containing j spikes.

either oscillatory but with an amplitude that increases exponentially with
time, or nonoscillatory but exponentially increasing. Our interest is with the
former. According to the Sturm oscillation theorem (Coddington & Levin-
son, 1955), each of the periodic functions, p1(s) and p2(s), of a solution in the
jth instability region has exactly j zeros per oscillation period of the slow
wave (Ermentrout & Kopell, 1986).

Returning to our original variable,

θ(s)=2 cot−1




2(c1(αp1(s) + p′
1(s))

+ c2 exp[−2αs](−αp2(s) + p′
2(s)))

(1 + b)(c1p1(s) + c2 exp[−2αs]p2(s))


 , (4.12)
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since α > 0, then if c1 �= 0, θ(s) exponentially approaches the stable periodic
solution

θs(s) = 2 cot−1

[
2

(
αp1(s) + p′

1(s)
)

p1(s)
(
1 + b

)
]

. (4.13)

Since p1(s) has j zeros over the period of the slow-wave oscillation, the
argument to cot−1 “blows up” j times over this period. Consequently θ

passes 0 j times within a period. Furthermore, by use of equations 3.5 and
3.7, it is simple to verify that each time θ passes through 0, it does so with
a positive velocity. Thus, θ wraps around the torus j times per slow-wave
cycle, and this then corresponds to a burst containing j spikes.

The coefficients of the Mathieu equation, 4.9, are parameterized by the
temperature, and so as T varies, it carves a trajectory across the (a, q) plane.
As the trajectory passes through the kth instability region, the neuron has a
burst length of k spikes, generating the plateaus seen in Figure 5.

Note also that while ε appears in the EK transform, it drops out of the
canonical model (see equation 3.2). Ermentrout and Kopell further show
(1986, lemma 4) that for any pair of Mathieu coefficients (a, q) that lie in any
instability region of the Strutt map, there exists a sufficiently small ε such
that there is a solution to the full equations that converges to the reduced
one.

4.2 Stochastic Dynamics of Bursting and Beating.

4.2.1 Smoothing the Mathieu Staircase. To clarify how the transitions be-
tween plateaus become smoothed as noise is introduced, we will examine
the transition from beating to quiescence, occurring at T = T1. Our con-
clusions will extrapolate to each transition between the nth and (n − 1)th
plateaus.

We introduce a small amount of noise into the dynamics of equation 3.11,
so that D �= 0.3 For T marginally greater than T1, the neuron now emits a
succession of single spikes that are entrained to the underlying slow wave,
but occasionally cycles are skipped. As the temperature increases beyond
T1, cycles are skipped more frequently, until the neuron becomes silent. At
any T, the skipping rate depends on the noise intensity; the noise simply
propels the voltage over the unstable fixed point (Gang, Ditzinger, Ning, &
Haken, 1993; Rappel & Strogatz, 1994).

Conversely, for temperatures slightly below T1 the noisy neuron is seen
to misfire occasionally and thus skip a period of the slow-wave oscillation.
In this regime, although the deterministic neuron is able to fire, the noise can
trap the system above the ghost bottleneck and postpone its firing. To under-
stand this, note that critical slowing down in the laminar bottleneck means

3 Recall equation 3.10; the noise intensity is assumed to be independent of T.
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that the noisy dynamics have negligible deterministic motion (“drift”) in
this region and so approximates a one-dimensional Wiener process. Thus,
the neuron is equally likely to diffuse in either direction. If the diffusion
acts to diminish θ̇ , the firing condition in equation 4.7 may be violated and
firing retarded. Qualitatively similar retardation and trapping due to noise
has been noted by Apostolico et al. (1994) as a failure mechanism in bistable
switches.

These two skipping modes have a natural interpretation in terms of the
Strutt map. Neural dynamics close to a transition temperature correspond to
a region in parameter space that is close to a tongue boundary. The inclusion
of noise allows the neuron to execute a random walk through the Strutt map,
and so to explore adjacent regions of the parameter space. Thus, if the neuron
is in the jth tongue but lies close to the (j + 1)th, then the noise can carry
the neuron over the boundary, and thus augment the burst. Conversely, if
the neuron lies closer to the boundary with the (j − 1)th tongue, the noise
can delete a spike from the burst.

4.2.2 The Skipping Rate. We have seen that for the deterministic neuron,
a spike is generated only if θ passes through π within the first half of the
cycle. Numerical investigations of equation 4.1 show that the condition in
equation 4.7 generalizes to the case of weak noise, provided we consider
instead the probability that θ is greater than π after half a driving period.
We introduce the conditional probability density p(θ, t|θ0, t0) subject to the
initial condition

p(θ, 0|θ̂s, 0) = δ(θ − θ̂s) (4.14)

(recall that the stable state θ̂s ≡ cos−1(−λmin)). Therefore the probability
P(θ > π, t|θ̂s, 0) that at a time t, θ is greater than π is given by

P(θ > π, t|θ̂s, 0) =
∫ 2π

π

p(θ, t|θ̂s, 0)dθ, (4.15)

which is equal to the probability of generating an action potential. By per-
forming an ensemble average, we may equate this quantity with the mean
number of spikes per slow-wave cycle.

The conditional probability density obeys a Smoluchowski equation
(Risken, 1989),

∂

∂t
p(θ, t|θ̂s, 0) = ∂

∂θ

[
U′(θ, t) + D

2
∂

∂θ

]
p(θ, t|θ̂s, 0) (4.16)

where U′(θ, t) represents the spatial derivative of the potential. The time de-
pendence of the potential forbids a general closed solution to equation 4.16
and furthermore makes a numerical solution difficult to obtain. However,
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a Monte Carlo approximation to the probability density p(θ, t|θ̂s, 0) may
be obtained. We first numerically iterate an ensemble of N receptors θi(t),
i = 1, . . . ,N , for half of one slow-wave period, subject to the initial condition
θi(t = 0) = θ̂s ≡ cos−1(−λmin), ∀ i ∈ N . An approximation to p(θ, t|θ̂s, 0)

will be given by a normalized histogram of the ensemble of θi(t = π/�)

and so an estimation of the firing rate may be found from equation 4.15 (see
Figure 5).

5 Discussion

We have developed a phase model of slow-wave parabolic bursting cold re-
ceptors that qualitatively reproduces the observed firing patterns at differ-
ent constant temperatures. The stochastic extension of this model accounts
for the variability in the number of spikes per burst and for the skipping
patterns. Our analysis in terms of a Strutt map allows a description of the
regions of parameter space that produce specific firing patterns, in both
the deterministic and noise-driven regimes. It is worthwhile to make a few
points regarding our model.

5.1 Paths for Other Receptors. There are many different thermally re-
sponsive bursting cells (Braun et al., 1984), for example, the feline lingual
and infraorbital nerves, the boa constrictor warm fiber, and the dogfish am-
pullae of Lorenzini. The discharge patterns of all of these cell types exhibit
many similar qualitative features, but quantitatively they differ; for exam-
ple, they have differing burst lengths at a given temperature. In addition,
there can also be considerable variation within a single cell type (recall
section 2). Therefore, the paradigm of a temperature-dependent noisy tra-
jectory through the Strutt map allows a universal model that might help to
explain the discharge patterns of more of these cells.

5.2 Chaos. The existence of chaos in thermoresponsive neuronal spike-
trains has been recently studied in both real (Braun et al., 1997) and model
(Longtin & Hinzer, 1996) neurons. However, the phase model reported here
does not support chaos; instead its spike-train irregularities have a stochastic
origin. Is this important? For this class of neurons at least, the answer is
“probably not,” since it is more likely that the bursting pattern itself is
the fundamental carrier of information rather than the timing of individual
spikes within a burst. Such patterns may be more reliably detected by higher
neurons due to synaptic facilitation.

5.3 Additive Versus Multiplicative Noise. We introduced thermal and
pump noise as a simple, additive term on the θ dynamics. However, there are
other ways in which noise might enter the dynamical equations. Consider
instead an additive term, ξs(t), on the slow dynamics (see also Gutkin &
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Ermentrout, 1998), so that equation 3.5 becomes

dθ

dt
= [b + cos(θ)] − [1 − cos(θ)] [A cos (�t) + ξs(t)]

= F(θ, t) − [1 − cos(θ)]ξs(t). (5.1)

ξs(t) now couples multiplicatively to the fast dynamics, and when θ = 0,
the effect of noise vanishes. Since the noise cannot carry the system around
the limit cycle, it might therefore appear that this sort of noise cannot con-
tribute to the spiking dynamics. However, recall the gradient system (see
equation 4.1) and Figure 6, and note that θ = 0 is halfway down a fairly
steep slope. At this time (the peak amplitude of a fast sodium spike) and for
the noise levels considered here, the deterministic dynamics dominate and
carry the cell around the limit cycle. The additive noise introduced in equa-
tion 3.11 would also have very little impact at this time.4 Further, following
Sigeti (1988), we could replace [1 − cos(θ)]ξs(t) by a mean noise (Gutkin &
Ermentrout, 1998), averaged over some spatial domain (say, between the
stable and unstable fixed points), and still get quantitatively similar behav-
ior.

5.4 Different Noise Distribution. In the absence of any electrophysio-
logical motivation, we have introduced a white noise process. Recall that the
discharge pattern derives from a random walk through the Strutt map and
that spike augmentation and deletion arise when the random walk crosses
a tongue boundary. In consequence, we note that other additive noise dis-
tributions (such as the Ornstein–Uhlenbeck process considered in Longtin
& Hinzer, 1996) will produce qualitatively similar burst patterns, and so
the actual noise distribution is not pertinent to an understanding of the
general model. However, the choice of noise distribution will be extremely
important when describing a specific burst pattern.

5.5 Asymmetric Burst Patterns and Parabolicity. In contrast to our phase
model, discharge patterns from real cold receptors exhibit asymmetric burst
patterns. Typical (Braun et al., 1980) burst profiles comprise a rapid increase
followed by a slower decrease in spike frequency, resulting in a sawtooth
profile. However, parabolic cells generally exhibit burst profiles with firing
rates that vary nonmonotonically throughout the burst. Thus, definitively
labeling the discharge of these cells as parabolic is problematic. However,
according to Rinzel and Lee (1987), the symmetry of the discharge of the
Plant model can be manipulated by parameter modification. Furthermore,

4 For additive noise, there is in fact a finite probability for θ to recross zero in the
opposite direction. However, such an event is unlikely, and, moreover, simply crossing
zero does not constitute a spike. A spike is a full rotation around the limit cycle, and the
probability that this will happen is vanishingly small (at least for these noise levels).
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Figure 8: A burst pattern from a sawtooth slow wave (the first few terms of the
expansion A[1 − ∑

n
1
n sin(nx)]). Parameters are � = 0.001, A = 0.5, and b = 0.6

(cf. figure 1 of Braun et al., 1980). See also Ermentrout and Kopell (1986).

for our canonical model, the time-dependent term A cos(�t) models the os-
cillatory slow-wave dynamics. We have no electrophysiological guidelines
to direct our choice for its functional form, and so we have chosen a cosine
for its analytical tractability. However, the asymmetry of the discharge of
real cells suggests that if the bursting is of slow-wave type, then the wave
is asymmetric. Thus a more complex waveform may better reproduce the
finer details of the discharge pattern. Figure 8 shows a single burst driven
by a sawtooth slow wave, and the finer details of this pattern are in bet-
ter agreement with data (compare with Figure 1 of Braun et al., 1980). Our
analysis readily extends to slow waves of this form, except now the Mathieu
equation must be replaced by a more general Hill equation (Ermentrout &
Kopell, 1986).

6 Conclusions

We have presented a tractable phase model for cold-receptor function. Our
phase model can be related to more complex, biophysical models of neu-
ronal operation, and we have shown how certain parameters of the phase
model derive from Plant’s ionic model. We have investigated the phase
model, both numerically and analytically, in the deterministic regime and
also when subject to a finite amount of thermal noise. Numerically obtained
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spike trains and interspike interval histograms from the phase model agree
well with the experimental data. From our investigations, we have shown
that skipping might be caused by noise. We have further shown that both
the number of spikes in a burst and also the skipping rate at any given tem-
perature may be predicted. Finally, we have studied how altering the noise
level affects the dynamics and shown that the skipping regime may be sub-
divided. The first part of skipping is caused by noise-induced trapping, and
the second by noise-induced spiking. Our findings provide a framework
in which to study the effect of various physicochemical parameters in the
environment of these receptors and analytical insight into the variability of
patterns across receptors.

Appendix

Here we analyze the temperature dependence of the slow-wave frequency
in a model of cold receptors based on the Plant model described in Longtin
and Hinzer (1996). This model is five-dimensional and possesses a clear
separation of timescales as discussed in (Rinzel & Lee, 1987). The three
fast variables are the voltage V and the gating variables h and n of the
fast-spiking dynamics (sodium inactivation and potassium activation). The
slow variables are the gating variable x of the slow inward current and the
intracellular calcium concentration y. The dynamics of V are given by

Cm
dV
dt

= −Iion(V, h, n; x, y). (A.1)

The dynamics of x and y are given by

dx
dt

= λ [x∞(V) − x] /τx (A.2)

dy
dt

= ρ
[
Kcx(VCa − V) − y

]
. (A.3)

In the approximation where the full system can be separated into fast and
slow subsystems, the slow dynamics are

dx
dt

= λ [x∞(Vss) − x] /τx (A.4)

dy
dt

= ρ
[
Kcx(VCa − Vss) − y

]
, (A.5)

where Vss is the pseudo-steady-state membrane voltage, obtained as a so-
lution of

0 = Iion(Vss, h∞(Vss), n∞(Vss); x, y). (A.6)
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The important fact is that Vss = Vss(x, y). Hence, the (x, y) dynamics are
coupled together by Vss. Based on numerical computations of this surface
in the absence of fast-spiking dynamics (Rinzel & Lee, 1987; see in particular
Figure 2), we then approximate the pseudo-steady-state surface by the plane

Vss(x, y) ≈ Vo + a1x + a2y, (A.7)

where Vo is the mean value of the slow-wave potential, and the partial
derivatives a1 and a2 are constants. These constants are negative according
to (Rinzel & Lee, 1987; see Figure 2). Using this form for Vss, we can write

x−1
∞ (x, y) = exp

[
0.15(−50 − Vo − a1x − a2y)

] + 1 . (A.8)

Introducing the coordinates X ≡ x − x∗ and Y ≡ y − y∗, the linearization
about the fixed point (x∗, y∗) of this two-dimensional subsystem is

dX
dt

= αλX + βλY (A.9)

dY
dt

= γρX + δρY, (A.10)

where we have isolated the temperature-dependent parameters λ and ρ

from the other parameters:

α ≡
(

∂x∞
∂x

∣∣∣∣
x∗,y∗

− 1

)
τ−1

x (A.11)

β ≡ τ−1
x

∂x∞
∂y

∣∣∣∣
x∗,y∗

(A.12)

γ ≡ Kc(VCa − Vo − 2a1x∗ − a2y∗) (A.13)

δ ≡ −(Kca2x∗ + 1). (A.14)

We note that x and y are positive quantities, as is δ; α and β are negative,
and the sign of δ is dependent on precise parameter values. If (αλ + ρδ)2 <

4ρλ(αδ − γβ), the eigenvalues are complex. At the bifurcation point, αλ +
ρδ = 0 and the frequency is given by

ωH =
√

(αδ − γβ)ρλ ∼ (ρλ)1/2, (A.15)

which is real since αδ − γβ > 0.

Acknowledgments

This work was supported by a Loughborough University postgraduate stu-
dentship, a traveling fellowship from the John Phillips Guest fund, and
NSERC (Canada).



1092 Peter Roper, Paul C. Bressloff, and André Longtin
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